Show simple item record

dc.contributor.advisorJerome J. Connor.en_US
dc.contributor.authorGhisbain, Pierreen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Civil and Environmental Engineering.en_US
dc.date.accessioned2013-12-06T20:47:24Z
dc.date.available2013-12-06T20:47:24Z
dc.date.issued2013en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/82833
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2013.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 223-228).en_US
dc.description.abstractThe economic impact of earthquakes has spurred the implementation of performance-based design to mitigate damage in addition to protecting human lives. A developing trend is to consider damage directly as a measure of seismic performance. In spite of the ability to estimate the cost of future earthquakes, adjusting the investment in seismic upgrades is impeded by the computational requirements of the probabilistic damage assessment. In this dissertation, we develop the damage assessment tools needed to implement structural optimization with an estimate of lifetime seismic damage in the objective function. A parametric study of the procedure to predict damage from earthquake simulation results is presented. By varying the procedure and analyzing the effects on the damage estimate, we identify simplifications that are beneficial for practical applications without losing important information about the behavior of the structure under seismic loads. The runtime of the probabilistic damage assessment is dominated by the response analysis of the structure to a range of earthquake scenarios. We consider alternatives to the standard but expensive nonlinear dynamic analysis, and we evaluate the error introduced by the faster analysis methods. The applicability of linear dynamic analysis is further investigated by detailing the effects of structural nonlinearities on the lifetime damage assessment. We determine that these effects are limited for the performance-based designed buildings, whose responses to the moderate but more frequent earthquakes remain essentially elastic. An application to the placement and sizing of viscous dampers in building frames is presented. A first procedure seeks the optimal trade-off between the investment in damping and the losses due to future earthquakes. For each level of damping considered, another optimization problem is solved to determine the most efficient damper layout considering the results of the damage assessment in a true performance-based design process.en_US
dc.description.statementofresponsibilityby Pierre Ghisbain.en_US
dc.format.extent228 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectCivil and Environmental Engineering.en_US
dc.titleSeismic performance assessment for structural optimizationen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineering
dc.identifier.oclc863157408en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record