Show simple item record

dc.contributor.authorMorris, Melody Kay
dc.contributor.authorSasisekharan, Ram
dc.contributor.authorLauffenburger, Douglas A.
dc.contributor.authorShriver, Zachary H.
dc.date.accessioned2013-12-09T15:07:29Z
dc.date.available2013-12-09T15:07:29Z
dc.date.issued2011-11
dc.date.submitted2011-10
dc.identifier.issn18606768
dc.identifier.issn1860-7314
dc.identifier.urihttp://hdl.handle.net/1721.1/82884
dc.description.abstractMathematical models have substantially improved our ability to predict the response of a complex biological system to perturbation, but their use is typically limited by difficulties in specifying model topology and parameter values. Additionally, incorporating entities across different biological scales ranging from molecular to organismal in the same model is not trivial. Here, we present a framework called “querying quantitative logic models” (Q2LM) for building and asking questions of constrained fuzzy logic (cFL) models. cFL is a recently developed modeling formalism that uses logic gates to describe influences among entities, with transfer functions to describe quantitative dependencies. Q2LM does not rely on dedicated data to train the parameters of the transfer functions, and it permits straight-forward incorporation of entities at multiple biological scales. The Q2LM framework can be employed to ask questions such as: Which therapeutic perturbations accomplish a designated goal, and under what environmental conditions will these perturbations be effective? We demonstrate the utility of this framework for generating testable hypotheses in two examples: (i) a intracellular signaling network model; and (ii) a model for pharmacokinetics and pharmacodynamics of cell-cytokine interactions; in the latter, we validate hypotheses concerning molecular design of granulocyte colony stimulating factor.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant P50-GM068762)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant R24-DK090963)en_US
dc.description.sponsorshipUnited States. Army Research Office (Institute for Collaborative Biotechnologies Grant W911NF-09-0001)en_US
dc.language.isoen_US
dc.publisherWiley Blackwellen_US
dc.relation.isversionofhttp://dx.doi.org/10.1002/biot.201100222en_US
dc.rights.urihttp://creativecommons.org/licenses/by/2.5/en_US
dc.sourcePMCen_US
dc.titleQuerying quantitative logic models (Q2LM) to study intracellular signaling networks and cell-cytokine interactionsen_US
dc.typeArticleen_US
dc.identifier.citationMorris, Melody K., Zachary Shriver, Ram Sasisekharan, and Douglas A. Lauffenburger. “Querying quantitative logic models (Q2LM) to study intracellular signaling networks and cell-cytokine interactions.” Biotechnology Journal 7, no. 3 (March 10, 2012): 374-386. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheimen_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Cell Decision Process Centeren_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. School of Engineeringen_US
dc.contributor.mitauthorMorris, Melody Kayen_US
dc.contributor.mitauthorShriver, Zachary H.en_US
dc.contributor.mitauthorSasisekharan, Ramen_US
dc.contributor.mitauthorLauffenburger, Douglas A.en_US
dc.relation.journalBiotechnology Journalen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsMorris, Melody K.; Shriver, Zachary; Sasisekharan, Ram; Lauffenburger, Douglas A.en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-9344-0205
dc.identifier.orcidhttps://orcid.org/0000-0002-2085-7840
dspace.mitauthor.errortrue
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record