MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Transdifferentiation of fibroblasts to neural stem cells

Author(s)
Cassady, John P
Thumbnail
DownloadFull printable version (9.471Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Biology.
Advisor
Rudolf Jaenisch.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The developmental process is carefully controlled by transcriptional and epigenetic changes that occur as a zygote transforms into an adult organism. This process can be reversed by the overexpression of transcription factors Oct4, Sox2, Klf4, and c-Myc, which reprogram a differentiated cell!s nucleus to one that is transcriptionally and epigenetically indistinguishable from an embryonic stem (ES) cell. However, it is still unclear if transcription factors can completely convert the nucleus of a differentiated cell into that of a distantly related somatic cell type with complete transcriptional and epigenetic reprogramming maintained in the absence of exogenous factor expression. To test this idea, we generated doxycyline (dox)-inducible vectors encoding neural stem cell-expressed factors. We found that stable, self-maintaining NSC-like cells could be induced under defined growth conditions. These cells were characterized in the absence of exogenous factor induction and were shown to be transcriptionally, epigenetically, and functionally similar to endogenous embryonic cortical NSCs. Additionally, a cellular system was created for reproducible generation of doxindependent iNSCs without additional factor transduction. Our results show that a transcriptionally and epigenetically reprogrammed somatic nucleus can be stabilized in vitro and provides a tool to study the mechanism of somatic cell conversion.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Biology, 2013.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references.
 
Date issued
2013
URI
http://hdl.handle.net/1721.1/83634
Department
Massachusetts Institute of Technology. Department of Biology
Publisher
Massachusetts Institute of Technology
Keywords
Biology.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Instagram YouTube

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.