MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Design and analysis of a flexible tendon-driven joint for in-pipe inspection robots

Author(s)
Al Hasan, Hisham H
Thumbnail
DownloadFull printable version (5.762Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
Kamal Youcef-Toumi.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Leaks in water distribution pipelines result in potentially significant losses of water resources and energy. The detection of such leaks is crucial for effective water resource management. In-pipe robots equipped with sensing devices are high potential solutions for accurate, efficient, and inexpensive leak detection. This work discusses the design, prototyping, and analysis of a tendon-driven flexible robotic joint that connects the sub-modules of an in-pipe snake-like robot. A simple, robust, well-sealed, and waterproof joint design is proposed. It enables the robot to handle complex pipeline geometry as it inspects the pipeline network during active hours. The joint designed has two degrees of freedom that enable the robotic platform to maneuver in 3 dimensions regardless of its roll orientation. Experiments were conducted to obtain the mechanical properties of the flexible joint and to confirm its functionality. The results of which are presented and discussed.
Description
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2013.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 53-54).
 
Date issued
2013
URI
http://hdl.handle.net/1721.1/83682
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.