MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Experimental determination of the thermal properties of multi-layered surfaces

Author(s)
Bailey, Jacob (Jacob S.)
Thumbnail
DownloadFull printable version (3.141Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
Anthony T. Patera.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This paper outlines a project which aims to use Certified Reduced Basis and General Empirical Interpolation Methods to conduct rapid, inexpensive, computationally simple thermal property estimation for the purpose of material identification. In this specific case, thermal conductivity and diffusivity were the parameters of interest. Towards this end, an experimental apparatus was constructed which applied a thermal load to various materials and observed their thermal responses. Bugs in the experimental apparatus were compensated for by way of a MATLAB script, until the data produced by individual tests became highly repeatable. Software was developed which simulated these thermal responses for given thermal loads and "true" parameter values. The materials were put through multiple tests (Laser Flash Test, Transient Plane Source) to independently identify possible values for these thermal properties. The "true" values were then chosen from these possible values based on how well they allowed the simulated response to fit the measured response. It was found that implementation of the CRB and GEIM allowed for an accurate estimate of these "true values," and did so without exhaustively carrying out a finite element analysis for every possible combination of parameters, creating an exponential increase in performance.
Description
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2013.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (page 23).
 
Date issued
2013
URI
http://hdl.handle.net/1721.1/83683
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.