MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Mechanical Engineering
  • Mechanical Engineering - Bachelor's degree
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Mechanical Engineering
  • Mechanical Engineering - Bachelor's degree
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Equivalent plastic strain for the Hill's yield criterion under general three-dimensional loading

Author(s)
Colby, Rebecca B. (Rebecca Bea)
Thumbnail
DownloadFull printable version (1.004Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
Tomasz Wierzbicki.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In many industrial applications, an accurate model of the initial yield surface of materials with a significant degree of anisotropy is required. Anisotropy due to preferred orientation can occur in sheet metal parts used in automotive applications due to the rolling processes used to form the sheets. Hill's quadratic yield criterion for anisotropic metals can be used to more accurately model these materials, allowing for improved constitutive models for the prediction of plastic failure and ductile fracture. In this thesis, a derivation of the equivalent plastic strain for plane stress in matrix notation is presented using associated plastic flow and work conjugation. A similar method is attempted for the general three-dimensional case; however, a singularity appears as the six components of the strain increment vector are not independent under plastic incompressibility. To remedy this, a reduced-order system was defined in terms of deviatoric stress, with one normal component eliminated, so that the previous method could be applied; the eliminated component was reintroduced in the final expression. This result was also further expanded to introduce the possibility of defining different plastic potentials and yield criteria under non-associated flow. The result is two expressions for equivalent plastic strain for the Hill's yield criterion in both plane stress and three-dimensional cases that have been partially validated analytically through testing limiting cases such as material isotropy.
Description
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2013.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (page 45).
 
Date issued
2013
URI
http://hdl.handle.net/1721.1/83690
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Mechanical Engineering - Bachelor's degree
  • Mechanical Engineering - Bachelor's degree

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.