MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Graphs, matrices, and populations : linear algebraic techniques in theoretical computer science and population genetics

Author(s)
Levin, Alex, Ph. D. (Alexander). Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (7.945Mb)
Alternative title
Linear algebraic techniques in theoretical computer science and population genetics
Other Contributors
Massachusetts Institute of Technology. Department of Mathematics.
Advisor
Bonnie Berger and Jonathan Kelner.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this thesis, we present several algorithmic results for problems in spectral graph theory and computational biology. The first part concerns the problem of spectral sparsification. It is known that every dense graph can be approximated in a strong sense by a sparse subgraph, known as a spectral sparsifier of the graph. Furthermore, researchers have recently developed efficient algorithms for computing such approximations. We show how to make these algorithms faster, and also give a substantial improvement in space efficiency. Since sparsification is an important first step in speeding up approximation algorithms for many graph problems, our results have numerous applications. In the second part of the thesis, we consider the problem of inferring human population history from genetic data. We give an efficient and principled algorithm for using single nucleotide polymorphism (SNP) data to infer admixture history of various populations, and apply it to show that Europeans have evidence of mixture with ancient Siberians. Finally, we turn to the problem of RNA secondary structure design. In this problem, we want to find RNA sequences that fold to a given secondary structure. We propose a novel global sampling approach, based on the recently developed RNAmutants algorithm, and show that it has numerous desirable properties when compared to existing solutions. Our method can prove useful for developing the next generation of RNA design algorithms.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Department of Mathematics, 2013.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 149-155).
 
Date issued
2013
URI
http://hdl.handle.net/1721.1/83695
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Massachusetts Institute of Technology
Keywords
Mathematics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.