MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bouncing and walking droplets : towards a hydrodynamic pilot-wave theory

Author(s)
Molác̆ek, Jan, Ph. D. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (24.18Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mathematics.
Advisor
John W. M. Bush.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Coalescence of a liquid drop with a liquid bath can be prevented by vibration of the bath. In a certain parameter regime, a purely vertical bouncing motion may ensue. In another, this bouncing state is destabilized by the droplet's wavefield, leading to drop motion with a horizontal component called walking. The walking drops are of particular scientific interest because Couder and coworkers have demonstrated that they exhibit many phenomena reminiscent of microscopic quantum particles. Nevertheless, prior to this work, no quantitative theoretical model had been developed to rationalize and inform the experiments before our work. In this thesis, we develop a hierarchy of theoretical models of increasing complexity in order to describe the drop's vertical and horizontal motion in the relevant parameter range. Modeling the drop-bath interaction via a linear spring is found lacking; therefore, a logarithmic spring model is developed. We first introduce this model in the context of a drop impacting a rigid substrate, and demonstrate its accuracy by comparison with existing numerical and experimental data. We then extend the model to the case of impact on a liquid substrate, and apply it to rationalize the dependence of the bouncing droplet's behaviour on the system parameters. The theoretical developments have motivated further experiments, which have in turn lead to refinements of the theory. We proceed by modeling the evolution of the standing waves created by impact on the bath, which enables us to predict the onset of walking and the dependence of the walking speed on the system parameters. New complex walking states are predicted, and subsequently validated by our detailed experimental study. A trajectory equation for the horizontal motion is obtained by averaging over the vertical bouncing.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Department of Mathematics, 2013.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 197-205).
 
Date issued
2013
URI
http://hdl.handle.net/1721.1/83698
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Massachusetts Institute of Technology
Keywords
Mathematics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.