MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On the regular slice spectral sequence

Author(s)
Ullman, John Richard
Thumbnail
DownloadFull printable version (6.693Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mathematics.
Advisor
Mark Behrens.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this thesis, we analyze a variant of the slice spectral sequence of [HHR (or SSS) called the regular slice spectral sequence (or RSSS). This latter spectral sequence is defined using only the regular slice cells. We show that the regular slice tower of a spectrum is just the suspension of the slice tower of the desuspension of that spectrum. Hence, many results for the RSSS are equivalent to corresponding results for the SSS. However, the RSSS has many multiplicative properties that the SSS lacks. Also, the slice towers that have been computed prior to this thesis happen to coincide with the corresponding regular slice towers. Hence, we find the RSSS to be much better behaved than the SSS. We give a comprehensive study of its basic properties, including multiplicative structure, Toda brackets, interaction with the norm functor of [HHRJ, vanishing lines and preservation of various kinds of extra structure. We identify a large portion of the first page of the spectral sequence algebraically by relating the RSSS to the homotopy orbit and homotopy fixed point spectral sequences, and determine the edge homomorphisms. We also give formulas for the slice towers of various families of spectra, and give several sample computations. The regular slice tower for equivariant complex K-theory is used to prove a special case of the Atiyah-Segal completion theorem. We also prove two conjectures of Hill from [Hill concerning the slice towers of Eilenberg MacLane spectra, as well as spectra that are concentrated over a normal subgroup.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Department of Mathematics, 2013.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 217-218).
 
Date issued
2013
URI
http://hdl.handle.net/1721.1/83701
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Massachusetts Institute of Technology
Keywords
Mathematics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.