Show simple item record

dc.contributor.advisorKarl Iagnemma.en_US
dc.contributor.authorPuszko, Gregory Den_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.date.accessioned2014-01-09T19:49:59Z
dc.date.available2014-01-09T19:49:59Z
dc.date.issued2013en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/83739
dc.descriptionThesis (S.B.)--Massachusetts Institute of Technology, Department of Mechanical Engineering, 2013.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 44-45).en_US
dc.description.abstractUnmanned Mars rovers are presented with the unique challenge of requiring autonomous driving control over rough, adverse territory. A software package, dubbed Artemis, was developed in order to model the expected forces and torques on a rover's drive wheels while traveling across unfamiliar Martian terrain. However, experimental testing must be done in order to validate this theoretical model. A test rig was developed by MIT's Robotic Mobility Group to measure the forces and torques on a single rover wheel as it traverses across a soil simulant of the Martian surface, and compared that measured data to the hypothetical results predicted by Artemis. A significant portion of this work is dedicated toward the determination of the proper soil simulant to use in the test rig. Several compositions of Mauricetown NJ70 material and SilCoSil 250 Ground Silica were tested in a direct shear test in order to distinguish the properties of the material at various concentrations. With its high residual stress, low peak strength, and large internal friction angle, a mixture of 75% NJ70 with 25% SilCoSil by weight was selected as the Martian soil simulant. The experimental data revealed that as slip values and vertical loads on the rover wheel increases, values for drawbar force, wheel torque, and sinkage generally increase as well, which are the same trends predicted by the Artemis software package. Supplementary testing will need to be completed for additional slip levels and vertical loads to further substantiate the results of the Artemis software. Moreover, additional testing should be done to characterize the test soil's properties, to directly compare the results of the Artemis model to the experimental figures.en_US
dc.description.statementofresponsibilityby Gregory D. Puszko.en_US
dc.format.extent45 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleTerramechanical analysis of rover wheel mobility over simulated Martian terrain at various slip conditions and vertical loadsen_US
dc.typeThesisen_US
dc.description.degreeS.B.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc864600325en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record