MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Consequences of a mobile genetic element integrated at secondary locations

Author(s)
Menard, Kayla L. (Kayla Lynne)
Thumbnail
DownloadFull printable version (5.692Mb)
Other Contributors
Massachusetts Institute of Technology. Microbiology Graduate Program.
Advisor
Alan D. Grossman.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Integrative and conjugative elements (ICEs) are widespread mobile genetic elements that are integrated in bacterial chromosomes, but can excise and transfer to a recipient through conjugation. ICEs are important agents of evolution, contributing to the acquisition of new traits, including antibiotic resistance. Many ICEs are site-specific in that they integrate preferentially into a primary attachment site in the bacterial chromosome. Site-specific ICEs can integrate into secondary locations, but little is known about the consequences of integration. Using ICEBs1, a site-specific ICE from Bacillus subtilis, I found that integration into secondary attachment sites is detrimental to both ICEBs1 and the host cell. Integration at secondary locations is detrimental to ICEBsJ. Once integrated in the chromosome, excision of ICEBs1 from all secondary attachment sites analyzed was either reduced (4 sites) or undetectable (3 sites) compared to ICEBs1 excision from the primary site. Additionally, from two of the four secondary sites that exhibited reduced but detectable excision, the excised, circular form of ICEBs1 was present at lower levels than expected, indicating that circular ICEBs1 may be unstable. Defects in excision and stability of ICEBs] severely limit its ability to spread to other cells. Integration at secondary locations is detrimental to the host cell. Induction of ICEBs1 gene expression in secondary integration sites resulted in a defect in cell proliferation and/or viability, as well as induction of the SOS response. These effects are likely due to DNA damage resulting from plasmid-like, rolling-circle replication of the excision-defective ICEBs1 in the chromosome. Consistent with this model, deletion of ICEBs] replication genes (nicK and helP) alleviated the proliferation and viability defects. Implications for the evolution of ICEs. These previously unrecognized detrimental effects may provide selective pressure against propagation of ICEBs1 in secondary attachment sites. Such detrimental effects could explain the maintenance and prevalence of site-specific integration among ICEs.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Microbiology Graduate Program, 2013.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 91-96).
 
Date issued
2013
URI
http://hdl.handle.net/1721.1/83743
Department
Massachusetts Institute of Technology. Microbiology Graduate Program; Massachusetts Institute of Technology. Department of Biology
Publisher
Massachusetts Institute of Technology
Keywords
Microbiology Graduate Program.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.