MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Motion-reversal in colloidal walkers

Author(s)
Su, Yi-Han, S.B. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (2.676Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Physics.
Advisor
Alfredo Alexander-Katz and Mehran Kardar.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this research, the manipulation of colloidal systems composed of superparamagnetic particles in water is studied by a simulation method. In response to an external magnetic field, the dipoles drive the beads to self-assemble into chains, which rotate and consequently move across a nearby surface. Under strong surface-interaction, the dynamic and equilibrium structures are modeled using a Bell model and measured using Monte Carlo-type update steps. It is shown that the walking motion can be characterized as two different regimes corresponding to an increase of the rotating arm from half to all of the chain-length as the activation barrier of binding interaction increases with a constant overall increase in energy. When operating at rotational frequencies from 1 Hz to 9 Hz and applied field from I mT to 9 mT, the corresponding translational velocities of chain-like rotors can be approximated with a two-state model until the fragmentation transition of chain-like rotors takes place. The translational velocities of chain-like rotors scale linearly with respect to number of beads.
Description
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Physics, 2013.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (page 24).
 
Date issued
2013
URI
http://hdl.handle.net/1721.1/83780
Department
Massachusetts Institute of Technology. Department of Physics
Publisher
Massachusetts Institute of Technology
Keywords
Physics.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.