MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multifield inflation and differential geometry

Author(s)
Mazenc, Edward A
Thumbnail
DownloadFull printable version (2.479Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Physics.
Advisor
David I. Kaiser.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Cosmic inflation posits that the universe underwent a period of exponential expansion, driven by one or several quantum fields, shortly after the Big Bang. Renormalization requires the fields be non-minimally coupled to gravity. We examine such multifield models and find a rich geometric structure. After a conformal transformation of spacetime, the target field-space acquires non-trivial curvature. We explore two main consequences. First, we construct a field-space covariant framework to study quantum perturbations, extending prior work beyond the slow-roll approximation by working on the full phase space of the theory. Secondly, we show that a wide class of inflationary models can be understood as a geodesic motion on a suitably related manifold. Our geometric approach provides great insight into the (classical) field dynamics, and we have used them to compute non-gaussianities in the cosmic microwave background radiation spectrum.
Description
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Physics, 2013.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 63-67).
 
Date issued
2013
URI
http://hdl.handle.net/1721.1/83809
Department
Massachusetts Institute of Technology. Department of Physics
Publisher
Massachusetts Institute of Technology
Keywords
Physics.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.