MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Rational families of vector bundles on curves

Author(s)
Castravet, Ana-Maria, 1975-
Thumbnail
DownloadFull printable version (9.944Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mathematics.
Advisor
Joseph Harris.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
We find and describe the irreducible components of the space of rational curves on moduli spaces M of rank 2 stable vector bundles with odd determinant on curves C of genus g [greater than or equal to] 2. We prove that the maximally rationally connected quotient of such a component is either the Jacobian J(C) or a direct sum of two copies of the Jacobian. We show that moduli spaces of rational curves on M are in one-to-one correspondence with moduli of rank 2 vector bundles on the surface P[set]1 x C.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2002.
 
Includes bibliographical references (p. 163).
 
Date issued
2002
URI
http://hdl.handle.net/1721.1/8397
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Massachusetts Institute of Technology
Keywords
Mathematics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.