MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Wavelet-based multiresolution data representations for scalable distributed GIS services

Author(s)
Wu, Jingsong, 1972-
Thumbnail
DownloadFull printable version (11.45Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Civil and Environmental Engineering.
Advisor
Kevin Amaratunga.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Demand for providing scalable distributed GIS services has been growing greatly as the Internet continues to boom. However, currently available data representations for these services are limited by a deficiency of scalability in data formats. In this research, four types of multiresolution data representations based on wavelet theories have been put forward. The designed Wavelet Image (WImg) data format helps us to achieve dynamic zooming and panning of compressed image maps in a prototype GIS viewer. The Wavelet Digital Elevation Model (WDEM) format is developed to deal with cell-based surface data. A WDEM is better than a raster pyramid in that a WDEM provides a non-redundant multiresolution representation. The Wavelet Arc (WArc) format is developed for decomposing curves into a multiresolution format through the lifting scheme. The Wavelet Triangulated Irregular Network (WTIN) format is developed to process general terrain surfaces based on the second generation wavelet theory. By designing a strategy to resample a terrain surface at subdivision points through the modified Butterfly scheme, we achieve the result: only one wavelet coefficient needs to be stored for each point in the final representation. In contrast to this result, three wavelet coefficients need to be stored for each point in a general 3D object wavelet-based representation. Our scheme is an interpolation scheme and has much better performance than the Hat wavelet filter on a surface. Boundary filters are designed to make the representation consistent with the rectangular boundary constraint.
 
(cont.) We use a multi-linked list and a quadtree array as the data structures for computing. A method to convert a high resolution DEM to a WTIN is also provided. These four wavelet-based representations provide consistent and efficient multiresolution formats for online GIS. This makes scalable distributed GIS services more efficient and implementable.
 
Description
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2002.
 
Includes bibliographical references (p. 155-160).
 
Date issued
2002
URI
http://hdl.handle.net/1721.1/8421
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Civil and Environmental Engineering.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.