MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Evaluation of layer-by-layer assembly of polyelectrolyte multilayers in cell patterning technology

Author(s)
White, Aleksandr John, 1976-
Thumbnail
DownloadFull printable version (4.643Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Materials Science and Engineering.
Advisor
Michael F. Rubner.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The layer-by-layer assembly of polyelectrolytes into multilayered films is an attractive approach for fabricating novel biomaterials, as it offers tremendous control over the internal composition and surface properties of their layered architectures. In this work, polyelectrolyte multilayers (PEMs) were evaluated as a platform for applications in controlling the spatial adhesion of living cells. An overview is presented on current developments and competing technologies within research and industry with respect to cell patterning and cell-based devices. Interviewed individuals in research and industry suggested a variety of potential applications of PEMs in cell patterning technology. A patent search on the core technologies (i.e. PEMs and patterning methods) and on applications in cell patterning, cell-based screening, and cell-based biosensors revealed ample opportunity for starting a new venture with a platform based on the layer-by-layer assembly of PEMs. A brief business plan for starting a new venture with a platform based on the layer-by-layer assembly of PEMs is proposed to initially target the high throughput screening and cell-based biosensor markets.
Description
Thesis (M.Eng.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2002.
 
Includes bibliographical references (p. 45-49).
 
Date issued
2002
URI
http://hdl.handle.net/1721.1/8426
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Materials Science and Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.