Show simple item record

dc.contributor.advisorVladan Vuletić.en_US
dc.contributor.authorPeyronel, Thibault (Thibault Michel Max)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Physics.en_US
dc.date.accessioned2014-01-23T18:41:06Z
dc.date.available2014-01-23T18:41:06Z
dc.date.issued2013en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/84393
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2013.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 219-232).en_US
dc.description.abstractThe fundamental properties of light derive from its constituent particles, photons, which are massless and do no interact with each other. The realization of interactions between photons could enable a wide variety of scientific and engineering applications. In particular, coherent interactions would open the path for the simulation of quantum systems with light. Photon-photon interactions can be mediated by matter, in our case cold atomic ensembles, which provide a nonlinear medium. In conventional nonlinear media, the nonlinearities are negligibly weak at intensities corresponding to single photons and nonlinear optics at the few-photon level is a long-standing goal of optical and quantum science. In this thesis, we report on two different experimental approaches to create optical media with giant nonlinearities. Both approaches rely on Electromagnetically Induced Transparency, in which photons traveling in the medium are best described as part-matter part-light quantum particles, called polaritons. In our first approach, we achieve low-light nonlinearities by loading ensembles of cold atoms in a hollow-core photonic crystal fiber to enhance the polariton-photon interactions. In our second approach, the photons are coupled to strongly interacting Rydberg atoms, which mediate large interactions between single quanta of light. Moreover, the intrinsic nature of these interactions can be tailored to take on a coherent dispersive form.en_US
dc.description.statementofresponsibilityby Thibault Peyronel.en_US
dc.format.extent232 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectPhysics.en_US
dc.titleQuantum nonlinear optics using cold atomic ensemblesen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physics
dc.identifier.oclc867861321en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record