MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Computer-assisted proofs in geometry and physics

Author(s)
Minton, Gregory T. (Gregory Thomas)
Thumbnail
DownloadFull printable version (8.691Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mathematics.
Advisor
Abhinav Kumar.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this dissertation we apply computer-assisted proof techniques to two problems, one in discrete geometry and one in celestial mechanics. Our main tool is an effective inverse function theorem which shows that, in favorable conditions, the existence of an approximate solution to a system of equations implies the existence of an exact solution nearby. This allows us to leverage approximate computational techniques for finding solutions into rigorous computational techniques for proving the existence of solutions. Our first application is to tight codes in compact spaces, i.e., optimal codes whose optimality follows from linear programming bounds. In particular, we show the existence of many hitherto unknown tight regular simplices in quaternionic projective spaces and in the octonionic projective plane. We also consider regular simplices in real Grassmannians. The second application is to gravitational choreographies, i.e., periodic trajectories of point particles under Newtonian gravity such that all of the particles follow the same curve. Many numerical examples of choreographies, but few existence proofs, were previously known. We present a method for computer-assisted proof of existence and demonstrate its effectiveness by applying it to a wide-ranging set of choreographies.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Department of Mathematics, 2013.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references.
 
Date issued
2013
URI
http://hdl.handle.net/1721.1/84405
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Massachusetts Institute of Technology
Keywords
Mathematics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.