MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Finite element model of thermoelastic damping in MEMS

Author(s)
Gorman, John P. (John Patrick), 1973-
Thumbnail
DownloadFull printable version (6.120Mb)
Alternative title
Finite element analysis of thermoelastic damping in MEMS
Other Contributors
Massachusetts Institute of Technology. Dept. of Materials Science and Engineering.
Advisor
Amy E. Duwel.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Damping in MEMS resonators was studied experimentally and numerically. Quality factor measurements were performed on Draper gyroscopes made from boron doped silicon wafers with varying amount of germanium (0%, 2%, 23%, 30% ). The quality factors of gyroscopes with germanium were measured to be lower than those without germanium, due to increased anelastic damping. Specifically, the decreased thermal conductivity in the devices with germanium causes those devices to experience thermoelastic damping of a greater magnitude than the germanium-free devices. The amount of damping exhibited is found to be well explained by existing analytical expressions for thermoelastic dissipation in a beam model. The governing equations of thermo elasticity dictate that the amount of damping that a resonator undergoes is a function of both material properties as well as device geometry. Damping will become greatest at operating cycle times that are of the same scale as the thermal relaxation times of the device material. Due to the fact that analytical expressions exist for only a few simple geometries, a finite element model was developed to evaluate thermoelastic damping in more complicated geometries. The finite element model is demonstrated to be in good qualitative agreement with the analytical expressions, and is used to analyze the impact of design modifications such as the addition of fillets and anchors to a simple beam model. It is shown that depending on the size scale of the resonator (which dictates the amount of internal damping), these geometric modifications may either hinder or improve resonator damping characteristics.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2002.
 
Includes bibliographical references (p. 111).
 
Date issued
2002
URI
http://hdl.handle.net/1721.1/8458
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Materials Science and Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.