Dynamic application of problem solving strategies : dependency-based flow control
Author(s)
Jacobi, Ian Campbell
DownloadFull printable version (955.3Kb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Gerald Jay Sussman.
Terms of use
Metadata
Show full item recordAbstract
While humans may solve problems by applying any one of a number of different problem solving strategies, computerized problem solving is typically brittle, limited in the number of available strategies and ways of combining them to solve a problem. In this thesis, I present a method to flexibly select and combine problem solving strategies by using a constraint-propagation network, informed by higher-order knowledge about goals and what is known, to selectively control the activity of underlying problem solvers. Knowledge within each problem solver as well as the constraint-propagation network are represented as a network of explicit propositions, each described with respect to five interrelated axes of concrete and abstract knowledge about each proposition. Knowledge within each axis is supported by a set of dependencies that allow for both the adjustment of belief based on modifying supports for solutions and the production of justifications of that belief. I show that this method may be used to solve a variety of real-world problems and provide meaningful justifications for solutions to these problems, including decision-making based on numerical evaluation of risk and the evaluation of whether or not a document may be legally sent to a recipient in accordance with a policy controlling its dissemination.
Description
Thesis (Elec. E. in Computer Science)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013. This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. Cataloged from student submitted PDF version of thesis. Includes bibliographical references (pages 105-107).
Date issued
2013Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer SciencePublisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.