MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Edge-unfolding almost-flat convex polyhedral terrains

Author(s)
Chen, Yanping, M. Eng. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (2.848Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Erik Demaine.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this thesis we consider the centuries-old question of edge-unfolding convex polyhedra, focusing specifically on edge-unfoldability of convex polyhedral terrain which are "almost at" in that they have very small height. We demonstrate how to determine whether cut-trees of such almost-at terrains unfold and prove that, in this context, any partial cut-tree which unfolds without overlap and "opens" at a root edge can be locally extended by a neighboring edge of this root edge. We show that, for certain (but not all) planar graphs G, there are cut-trees which unfold for all almost-at terrains whose planar projection is G. We also demonstrate a non-cut-tree-based method of unfolding which relies on "slice" operations to build an unfolding of a complicated terrain from a known unfolding of a simpler terrain. Finally, we describe several heuristics for generating cut-forests and provide some computational results of such heuristics on unfolding almost-at convex polyhedral terrains.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2013.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 97-98).
 
Date issued
2013
URI
http://hdl.handle.net/1721.1/84729
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.