MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Explorations of quantum decoherence phenomena

Author(s)
Teklemariam, Grum, 1965-
Thumbnail
DownloadFull printable version (4.386Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Physics.
Advisor
David G. Cory and Edward H. Farhi.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis describes the experimental exploration of quantum decoherence using discrete and continuous-time decoherence maps. The experimental methodology uses liquid-state nuclear magnetic resonance spectroscopy techniques. Initially, a brief discussion of coherent control methods is given. Then, a detailed discussion of the decoherent control methods is presented. These methods describe how strong measurements can be emulated in an ensemble system by using pulsed magnetic field gradients, and how NMR decoupling techniques can be used to implement partial trace operations. Next, using quantum erasers we explore the stability of three-particle systems under different entangling interactions. With a two-spin system we illustrate the essential features of quantum erasers. The extension to three-spins allows us to use the pair of orthogonal decoherent operations used in quantum erasers to probe the two classes of entanglement in three-particle systems: the GHZ state and the W state. Finally, we develop a decoherence model of a decohering two-level system coupled to an environment with a few degrees of freedom. The couplings are of the [sigma]z [sigma]z type and only induce coherence damping. By introducing a stochastic evolution on the environment, the resulting randomization of the environment phases causes loss of information over the environment degrees of freedom and decohers the system. Control parameters in the stochastic driving of the environment were used to vary the rates of decoherence on the system, thereby allowing the establishment of a scaling law that related control parameters to decay rates.
Description
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Physics, 2002.
 
Includes bibliographical references (p. 77-80).
 
Date issued
2002
URI
http://hdl.handle.net/1721.1/8484
Department
Massachusetts Institute of Technology. Department of Physics
Publisher
Massachusetts Institute of Technology
Keywords
Physics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.