MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Copper speciation in estuaries and coastal waters

Author(s)
Kogut, Megan Brook, 1972-
Thumbnail
DownloadFull printable version (11.11Mb)
Alternative title
Cu speciation in estuaries and coastal waters
Other Contributors
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering.
Advisor
Bettina Voelker.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The goals of this dissertation are to better understand the sources and the Cu binding ability of ligands that control Cu toxicity in estuaries and harbors, where elevated Cu concentrations have caused documented toxic effects on microorganisms, fish, and benthic fauna. I modified and improved a commonly used approach to determine metal speciation (competitive ligand exchange adsorptive cathodic stripping voltammetry, CLE-ACSV). Using this new approach to chemical Cu speciation and an old approach to physical Cu speciation (filtration), I show that riverine humic substances, filtrable, recalcitrant and light absorbing molecules from degraded plant material, can account for all of the Cu binding in the Saco River estuary. This finding directly supports the hypothesis that terrestrial humic substances might be the most important source of Cu ligands for buffering Cu toxicity in coastal locations with freshwater inputs. However, fieldwork in coastal waters with large inputs of both Cu and suspended colloids (Boston Harbor, Narragansett Bay, and two ponds on Cape Cod) shows that some Cu present in these samples is inert to our competitive ligand exchange method for at least 48 hours. These results support the hypothesis that a significant fraction of the Cu present in these samples is physically sequestered in colloidal material, with the remaining fraction complexed by humic substances. Previous studies of Cu speciation were not able to distinguish between strongly complexed Cu and inert Cu, and our analytical approach should be used further to determine the role of colloids in Cu speciation in all natural waters.
Description
Thesis (Ph. D .)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2002.
 
Includes bibliographical references.
 
Date issued
2002
URI
http://hdl.handle.net/1721.1/84844
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Civil and Environmental Engineering.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.