MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Polarization manipulation in silicon photonics

Author(s)
Su, Zhan, Ph. D. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (20.43Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Michael R. Watts.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Silicon photonics is moving fast toward industrialization. It satisfies the increasing demand for higher speed, larger bandwidth communication. Thus it has a wide range of applications including high-performance computing, data center, telecom etc.. However, the on-chip (waveguide) and off-chip (fiber) components for silicon photonics have quite different characteristics for the polarizations of light. The polarization dependence of on-chip silicon photonics components still remains a bottleneck for the real application of it. Efficient devices for manipulating polarizations are highly demanded. Herein, we present the designs of adiabatic polarization rotator (PR) and polarization splitter and rotator (PSR) to deal with this issue. With their adiabatic nature, larger bandwidth (>100 nm) and better fabrication tolerance have been achieved. Besides, the effort toward the realization of a full-functional two-input two-output PBS, which is an exact correspondent of the traditional cube PBS in free space is presented. The structure was fabricated in a commercial state-of-art CMOS foundry and has a bandwidth of over 150 nm and less than -10dB crosstalk level. Though its application in traditional communication can be replaced by PS, PR or PSR, its application in more accurate systems such as polarization-entangled states generation and manipulation in quantum optics or on-chip heterodyne interferometers. Moreover, original compact-ring resonator based even-dropping optical bus system is proposed and analyzed in detail. Large free-spectral range offered by small radius micro-ring gives more communication channels to fully utilize the power of wavelength division multiplexing (WDM). Furthermore, a multi-channel WDM broadcasting system is proposed using the optical bus design. We have demonstrated a two-channel broadcasting system, which can be further increased to more than 16 channels.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 137-142).
 
Date issued
2013
URI
http://hdl.handle.net/1721.1/84860
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Instagram YouTube

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.