Show simple item record

dc.contributor.advisorDavid J. Perreault and Khurram K. Afridi.en_US
dc.contributor.authorSantiago-GonzáIez, Juan Antonioen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2014-02-10T16:55:47Z
dc.date.available2014-02-10T16:55:47Z
dc.date.issued2013en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/84862
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 113-116).en_US
dc.description.abstractResonant rectifiers have important applications in very-high-frequency power conversion systems, including dc-dc converters, wireless power transfer systems, and energy recovery circuits for radio-frequency systems. In many of these applications, it is desirable for the rectifier to appear as a resistor at its ac input port. However, for a given dc output voltage, the input impedance of a resonant rectifier varies in magnitude and phase as output power changes. In this thesis, a design method is introduced for realizing single-diode "shunt-loaded" resonant rectifiers, or class E rectifiers, that provide near-resistive input impedance over a wide range of output power levels. The proposed methodology is demonstrated experimentally for 10:1 and 2:1 power range ratios at 30 MHz input frequency. Some design limitations are found and explained. Additionally, the performance of Schottky diodes in very high frequency (VHF) rectifiers is explored. It has been found that diodes have increased losses when switched at VHF and this phenomenon varies by manufacturer and device specifications. A study of diodes in Class E rectifiers is conducted to assess their performance in VHF rectification. Some good diodes are identified for VHF operation, including both commercial Si and SiC Schottky diodes and experimental GaN diodes. The foundations are laid for developing a library of diodes useful for this application. The resonant rectifier design methodology presented in this thesis uses a graphical approach based on normalized design curves. It enables a fast design with only a small amount of calculations needed and yields good accuracy in the final circuit. It is hoped that this design approach and the insights available from the design curves will prove to be useful in designing resonant rectifiers in applications that require resistive rectifier loads.en_US
dc.description.statementofresponsibilityby Juan Antonio Santiago-GonzáIez.en_US
dc.format.extent116 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleDesign of class E resonant rectifiers for very high frequency power conversionen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc868323433en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record