MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A methodology for hardware-software codesign

Author(s)
King, Myron Decker
Thumbnail
DownloadFull printable version (11.92Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Arvind.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Special purpose hardware is vital to embedded systems as it can simultaneously improve performance while reducing power consumption. The integration of special purpose hardware into applications running in software is difficult for a number of reasons. Some of the difficulty is due to the difference between the models used to program hardware and software, but great effort is also required to coordinate the simultaneous execution of the application running on the microprocessor with the accelerated kernel(s) running in hardware. To further compound the problem, current design methodologies for embedded applications require an early determination of the design partitioning which allows hardware and software to be developed simultaneously, each adhering to a rigid interface contract. This approach is problematic because often a good hardware-software decomposition is not known until deep into the design process. Fixed interfaces and the burden of reimplementation prevent the migration of functionality motivated by repartitioning. This thesis presents a two-part solution to the integration of special purpose hardware into applications running in software. The first part addresses the problem of generating infrastructure for hardware-accelerated applications. We present a methodology in which the application is represented as a dataflow graph and the computation at each node is specified for execution either in software or as specialized hardware using the programmer's language of choice. An interface compiler as been implemented which takes as input the FIFO edges of the graph and generates code to connect all the different parts of the program, including those which communicate across the hardware/software boundary. This methodology, which we demonstrate on an FPGA platform, enables programmers to effectively exploit hardware acceleration without ever leaving the application space. The second part of this thesis presents an implementation of the Bluespec Codesign Language (BCL) to address the difficulty of experimenting with hardware/software partitioning alternatives. Based on guarded atomic actions, BCL can be used to specify both hardware and low-level software. Based on Bluespec SystemVerilog (BSV) for which a hardware compiler by Bluespec Inc. is commercially available, BCL has been augmented with extensions to support more efficient software generation. In BCL, the programmer specifies the entire design, including the partitioning, allowing the compiler to synthesize efficient software and hardware, along with transactors for communication between the partitions. The benefit of using a single language to express the entire design is that a programmer can easily experiment with many different hardware/software decompositions without needing to re-write the application code. Used together, the BCL and interface compilers represent a comprehensive solution to the task of integrating specialized hardware into an application.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2013.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 150-156).
 
Date issued
2013
URI
http://hdl.handle.net/1721.1/84891
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.