MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Applications of nanoimprinted structures to organic photovoltaics

Author(s)
Flores, Eletha J
Thumbnail
DownloadFull printable version (10.44Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Vladimir Bulović.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Small-molecule organic photovoltaic cells (OPVs) have the potential to be a low-cost, flexible power conversion solution to many energy problems. These OPVs take advantage of an extremely thin active layer which enables this flexibility and reduces material volume. However, it is this thin quality that calls for improved power conversion efficiency compared to traditional silicon solar cells. Thin films suffer from reduced optical path lengths, which hinder light absorption and hence, power conversion efficiency. Many designs have been proposed to improve light absorption. A novel light-trapping substrate geometry for OPVs is presented which is based on a conformally-coated, subwavelength-textured substrate design which is intended to substantially increase optical path lengths. The subwavelength nature of these Nanocones/Nanowedges decouples the light propagation from the exciton diffusion path. This is an optimized situation for efficient charge transfer. Enhanced power absorption into the OPV active layer has been demonstrated via numerical computation methods, including COMSOL FEM and Lumerical FDTD. The challenge to fabricate a working device by using nanoimprinting to create the structures in a conductive polymer will be presented, where the nanoimprinting process is optimized to maintain good electrical properties of the patterned conductive film. We will also present an alternative approach that utilizes a conformal coating of the organic conductor PEDOT onto the pre-patterned nanostructures. Uniform and conformal PEDOT coverage over the nanoscale features was achieved using an all-dry deposition process.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2013.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 57-58).
 
Date issued
2013
URI
http://hdl.handle.net/1721.1/85419
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.