MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Smart scheduling : optimizing Tilera's process scheduling via reinforcement learning

Author(s)
Hanus, Deborah
Thumbnail
DownloadFull printable version (3.270Mb)
Alternative title
Optimizing Tilera's process scheduling via reinforcement learning
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
David Wingate.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
As multicore processors become more prevalent, system complexities are increasing. It is no longer practical for an average programmer to balance all of the system constraints to ensure that the system will always perform optimally. One apparent solution to managing these resources efficiently is to design a self-aware system that utilizes machine learning to optimally manage its own resources and tune its own parameters. Tilera is a multicore processor architecture designed to highly scalable. The aim of the proposed project is to use reinforcement learning to develop a reward function that will enable the Tilera's scheduler to tune its own parameters. By enabling the parameters to come from the system's "reward function," we aim eliminate the burden on the programmer to produce these parameters. Our contribution to this aim is a library of reinforcement learning functions, borrowed from Sutton and Barto (1998) [35], and a lightweight benchmark, capable of modifying processor affinities. When combined, these two tools should provide a sound basis for Tilera's scheduler to tune its own parameters. Furthermore, this thesis describes how this combination may effectively be done and explores several manually tuned processor affinities. The results of this exploration demonstrates the necessity of an autonomously-tuned scheduler.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2013.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 45-48).
 
Date issued
2013
URI
http://hdl.handle.net/1721.1/85423
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.