MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Prioritized text spotting using SLAM

Author(s)
Landa, Yafim
Thumbnail
DownloadFull printable version (11.21Mb)
Alternative title
Prioritized text spotting using simultaneous localization and mapping
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Seth Teller.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
We show how to exploit temporal and spatial coherence of image observations to achieve efficient and effective text detection and decoding for a sensor suite moving through an environment rich in text at a variety of scales and orientations with respect to the observer. We use simultaneous localization and mapping (SLAM) to isolate planar "tiles" representing scene surfaces and prioritize each tile according to its distance and obliquity with respect to the sensor, and how recently (if ever) and at what scale the tile has been inspected for text. We can also incorporate prior expectations about the spatial locus and scale at which text occurs in the world, for example more often on vertical surfaces than non-vertical surfaces, and more often at shoulder height than at knee height. Finally, we can use SLAM-produced information about scene surfaces (e.g. standoff, orientation) and egomotion (e.g. yaw rate) to focus the system's text extraction efforts where they are likely to produce usable text rather than garbage. The technique enables text detection and decoding to run effectively at frame rate on the sensor's full surround, even though the CPU resources typically available on a mobile platform (robot, wearable or handheld device) are not sufficient to such methods on full images at sensor rates. Moreover, organizing detected text in a locally stable 3D frame enables combination of multiple noisy text observations into a single higher-confidence estimate of environmental text.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2013.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 91-94).
 
Date issued
2013
URI
http://hdl.handle.net/1721.1/85437
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.