MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sparse recovery and Fourier sampling

Author(s)
Price, Eric C
Thumbnail
DownloadFull printable version (13.14Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Piotr Indyk.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In the last decade a broad literature has arisen studying sparse recovery, the estimation of sparse vectors from low dimensional linear projections. Sparse recovery has a wide variety of applications such as streaming algorithms, image acquisition, and disease testing. A particularly important subclass of sparse recovery is the sparse Fourier transform, which considers the computation of a discrete Fourier transform when the output is sparse. Applications of the sparse Fourier transform include medical imaging, spectrum sensing, and purely computation tasks involving convolution. This thesis describes a coherent set of techniques that achieve optimal or near-optimal upper and lower bounds for a variety of sparse recovery problems. We give the following state-of-the-art algorithms for recovery of an approximately k-sparse vector in n dimensions: -- Two sparse Fourier transform algorithms, respectively taking ... time and ... samples. The latter is within log e log n of the optimal sample complexity when ... -- An algorithm for adaptive sparse recovery using ... measurements, showing that adaptivity can give substantial improvements when k is small. -- An algorithm for C-approximate sparse recovery with ... measurements, which matches our lower bound up to the log* k factor and gives the first improvement for ... In the second part of this thesis, we give lower bounds for the above problems and more.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2013.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 155-160).
 
Date issued
2013
URI
http://hdl.handle.net/1721.1/85458
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.