MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Probabilistic modeling of kidney dynamics for renal failure prediction

Author(s)
Ooi, Boon Teik
Thumbnail
DownloadFull printable version (4.704Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Peter Szolovits and William J. Long.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The large quantity of clinical data collected from the Intensive Care Unit (ICU) has made clinical investigation by a data-driven approach more effective. In this thesis, we developed probabilistic models for modeling variable kinetics and temporal dynamics of states. We applied the models to the prediction of acute kidney injury (AKI), but the models are applicable to other medical conditions as well. It is known that serum creatinine follows first-order clearance kinetics. We developed a stochastic kinetic model for first-order clearance and used it to model creatinine kinetics. Some properties implied by the model that are verifiable with the available data are consistent with the empirical results. Those properties are mean-reversion, variation with linear standard deviation, and convergence of variance to a finite value. Based on the stochastic kinetic model, creatinine can be treated as a lognormal random variable with state-dependent parameters. We model the temporal dynamics of kidney states and creatinine using a Hidden Markov Model. Observations of creatinine are assumed to be random variables, with baseline creatinine as mean. Each individual baseline is itself a random variable sampled from a population distribution. Baseline for each patient can be estimated by combining the population distribution and all creatinine observations of the patient using techniques similar to Bayesian inference. Prediction of acute kidney injury with this generative model gives an AUC of 0.8259 and 0.8497 for female and male population respectively.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2013.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 85-90).
 
Date issued
2013
URI
http://hdl.handle.net/1721.1/85462
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.