dc.contributor.advisor | Leslie P. Kaelbling. | en_US |
dc.contributor.author | Puranmalka, Keshav | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science. | en_US |
dc.date.accessioned | 2014-03-06T15:43:55Z | |
dc.date.available | 2014-03-06T15:43:55Z | |
dc.date.copyright | 2013 | en_US |
dc.date.issued | 2013 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/85464 | |
dc.description | Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2013. | en_US |
dc.description | Cataloged from PDF version of thesis. | en_US |
dc.description | Includes bibliographical references (pages 65-66). | en_US |
dc.description.abstract | Unexpected events often occur in the world of sports. In my thesis, I present work that models the NBA. My goal was to build a model of the NBA Machine Learning and other statistical tools in order to better make predictions and quantify unexpected events. In my thesis, I first review other quantitative models of the NBA. Second, I present novel features extracted from NBA play-by-play data that I use in building my predictive models. Third, I propose predictive models that use team-level statistics. In the team models, I show that team strength relations might not be transitive in these models. Fourth, I propose predictive models that use player-level statistics. In these player-level models, I demonstrate that taking the context of a play into account is important in making useful prediction. Finally, I analyze the effectiveness of the different models I created, and propose suggestions for future lines of inquiry. | en_US |
dc.description.statementofresponsibility | by Keshav Puranmalka. | en_US |
dc.format.extent | 66 pages | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Electrical Engineering and Computer Science. | en_US |
dc.title | Modelling the NBA to make better predictions | en_US |
dc.title.alternative | Modelling the National Basketball Association to make better predictions | en_US |
dc.type | Thesis | en_US |
dc.description.degree | M. Eng. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | |
dc.identifier.oclc | 870969496 | en_US |