Show simple item record

dc.contributor.advisorWai K. Cheng and John B. Heywood.en_US
dc.contributor.authorSmith, Patrick M. (Patrick Michael)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.date.accessioned2014-03-06T15:44:29Z
dc.date.available2014-03-06T15:44:29Z
dc.date.copyright2013en_US
dc.date.issued2013en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/85472
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2013.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 159-162).en_US
dc.description.abstractA set of experiments and a simulation study are completed to quantify the effect of the piston crevice on engine efficiency. The simulation study breaks down the loss mechanisms on brake efficiency at different displacement volumes (300 - 500 cc) and compression ratios (8-20). Experiments focus on indicated efficiencies for a narrow range of compression ratios (9.24- 12.57) with different piston crevice volumes. Piston crevice volume is increased in two steps by machining a groove into the piston top land, and is decreased by raising the top ring. Indicated efficiency is measured at various loads (0.4 - 1.0 bar MAP), speeds (1500, 2000, 2500 rpm), and coolant temperatures (50°C and 80°C). All data points compared in this study are recorded at MBT timing with a relative air-fuel ratio ([gamma]) of 1. For the baseline case (CR = 9.24, speed = 2000 rpm, coolant = 80°C), increased crevice volume results in an indicated efficiency degradation of 0.3-0.5%-points per 1000 mm3. This absolute decrease corresponds to a 1.2-1.5% relative decrease for a 100% increase in crevice volume; referenced to the control piston crevice modification. Decreasing crevice volume leads to a gain in indicated efficiency of 2.3-3.5%-points per 1000 mm3 , which corresponds to a 6.9- 11.8% relative increase for a 100% decrease in crevice volume; referenced to the control piston crevice modification. Results of the experimental investigation, when compared across compression ratio, engine speed, and coolant temperature, show that the crevice effect on efficiency is largely independent of these three parameters. Large gains from decreased piston crevice volume prompt renewed discussions on piston top land, top ring, and crown design.en_US
dc.description.statementofresponsibilityby Patrick M. Smith.en_US
dc.format.extent162 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleCrevice volume effect on spark ignition engine efficiencyen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc870970164en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record