MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Generative probabilistic models of neuron morphology

Author(s)
Serene, Stephen Rothrock
Thumbnail
DownloadFull printable version (3.854Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Joshua Tenenbaum.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Thanks to automation in ultrathin sectioning and confocal and electron microscopy, it is now possible to image large populations of neurons at single-cell resolution. This imaging capability promises to create a new field of neural circuit microanatomy. Three goals of such a field would be to trace multi-cell neural networks, to classify neurons into morphological cell types, and to compare patterns and statistics of connectivity in large networks to meaningful null models. However, those goals raise significant computational challenges. In particular, since neural morphology spans six orders of magnitude in length (roughly 1 nm-1 mm), a spatial hierarchy of representations is needed to capture micron-scale morphological features in nanometer resolution images. For this thesis, I have built and characterized a system that learns such a representation as a Multivariate Hidden Markov Model over skeletonized neurons. I have developed and implemented a maximum likelihood method for learning an HMM over a directed, unrooted tree structure of arbitrary degree. In addition, I have developed and implemented a set of object-oriented data structures to support this HMM, and to produce a directed tree given a division of the leaf nodes into inputs and outputs. Furthermore, I have developed a set of features on which to train the HMM based only on information in the skeletonized neuron, and I have tested this system on a dataset consisting of confocal microscope images of 14 fluorescence-labeled mouse retinal ganglion cells. Additionally, I have developed a system to simulate neurons of varying difficulty for the HMM, and analyzed its performance on those neurons. Finally, I have explored whether the HMMs this system learns could successfully detect errors in simulated and, eventually, neural datasets.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2013.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (page 40).
 
Date issued
2013
URI
http://hdl.handle.net/1721.1/85494
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.