MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

FlexGP 2.0 : multiple levels of parallelism in distributed machine learning via genetic programming

Author(s)
Sherry, Dylan J. (Dylan Jacob)
Thumbnail
DownloadFull printable version (22.89Mb)
Alternative title
Multiple levels of parallelism in distributed machine learning via genetic programming
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Kalyan Veeramachaneni and Una-May O'Reilly.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis presents FlexGP 2.0, a distributed cloud-backed machine learning system. FlexGP 2.0 features multiple levels of parallelism which provide a significant improvement in accuracy v.s. elapsed time. The amount of computational resources in FlexGP 2.0 can be scaled along several dimensions to support large, complex data. FlexGP 2.0's core genetic programming (GP) learner includes multithreaded C++ model evaluation and a multi-objective optimization algorithm which is extensible to pursue any number of objectives simultaneously in parallel. FlexGP 2.0 parallelizes the entire learner to obtain a large distributed population size and leverages communication between learners to increase performance via transferral of search progress between learners. FlexGP 2.0 factors training data to boost performance and enable support for increased data size and complexity. Several experiments are performed which verify the efficacy of FlexGP 2.0's multilevel parallelism. Experiments run on a large dataset from a real-world regression problem. The results demonstrate both less time to achieve the same accuracy and overall increased accuracy, and illustrate the value of FlexGP 2.0 as a platform for machine learning.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2013.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 105-107).
 
Date issued
2013
URI
http://hdl.handle.net/1721.1/85498
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.