MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Resistance and wake prediction for early stage ship design

Author(s)
Johnson, Brian (Brian David)
Thumbnail
DownloadFull printable version (8.337Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
Chryssostomos Chryssostomidis, Stefano Brizzolara and Douglas Read.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Before the detailed design of a new vessel a designer would like to explore the design space to identify an appropriate starting point for the concept design. The base design needs to be done at the preliminary design level with codes that execute fast to completely explore the design space. The intent of this thesis is to produce a preliminary design tool that will allow the designer to predict the total resistance and propeller wake for use in an optimization program, having total propulsive efficiency as an objective function. There exist design tools to predict the total resistance and propeller wake, but none that provide adequate computational times for the preliminary design stage. The tool developed uses a potential flow solution coupled with an integral boundary layer solver to predict the viscous resistance and propeller wake. The wave drag is calculated using a modified linear theory, thus eliminating the need to run fully three-dimensional free surface CFD codes. The tool developed is validated against published Series 60 test data.
Description
Thesis: S.M. in Naval Architecture and Marine Engineering, Massachusetts Institute of Technology, Department of Mechanical Engineering, 2013.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 75-76).
 
Date issued
2013
URI
http://hdl.handle.net/1721.1/85527
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.