MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A nano-stepping robotic instrumentation platform

Author(s)
Wahab, Adam Joseph
Thumbnail
DownloadFull printable version (16.67Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
Ian W. Hunter.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The development of an Autonomous Nano-stepping Tool (ANT) system is presented. Each ANT is a small, tripodal, robotic instrument capable of untethered precision motion within a quasi-three-dimensional workspace of arbitrary size. The project aimed to address limitations of conventional benchtop micro/nanoscale measurement and manipulation systems by offering a low-cost, scalable alternative with comparable performance and extended functionality and flexibility. The design, fabrication, and evaluation the various electrical, mechanical, and software subsystems are discussed. Device prototypes are introduced along with a platform-agnostic interface for remote monitoring and control. The device step size and its frequency dependence are examined. A novel, high-resolution capacitive probe concept is detailed and characterized as an example of an inexpensive, low-power, sensor technology with which an ANT may be equipped to perform scanning probe microscopy. Several positioning schemes are discussed, including a distributed vision-based approach which utilized a custom cross-correlation processor.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2013.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 115-118).
 
Date issued
2013
URI
http://hdl.handle.net/1721.1/85528
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.