Show simple item record

dc.contributor.advisorRoger D. Kamm.en_US
dc.contributor.authorPolacheck, William J. (William Joseph)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.date.accessioned2014-03-06T15:48:50Z
dc.date.available2014-03-06T15:48:50Z
dc.date.issued2013en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/85531
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2013.en_US
dc.description"September 2013." Cataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 93-106).en_US
dc.description.abstractBreast cancer incidence in the United States is I in 8, and over 90% of breast cancer related deaths are due to metastases, secondary tumors at a site distant from the primary tumor. Metastasis formation requires carcinoma cells to navigate through the tumor microenvironment and invade the surrounding stroma. Migration is a highly orchestrated process in which cells are guided by both internal signals and signals from the microenvironment. Hence, understanding the mechanisms that guide cell migration in response to various stimuli in the tumor and stromal microenvironments is key to developing therapies that prevent tumor cell migration and render cancer more treatable. Osmotic and hydrostatic pressure gradients within the extracellular matrix (ECM) drive flow of interstitial fluid through the ECM. Elevated osmotic pressure, lymphatic collapse, solid stress, and increased microvascular permeability contribute to elevated interstitial fluid pressure (IFP) during carcinoma progression, and high intratumoral IFP leads to pressure gradients at the tumor margin, which drive fluid flow that emanates from the tumor core to drain in the surrounding stroma. In this thesis, we explore the effect of interstitial flow (IF) on tumor cell migration. We developed a microfluidic platform to apply repeatable, robust IF through tissue constructs consisting of human metastatic breast cancer cells embedded within a 3D collagen type I matrix. We implemented the microfluidic device to validate CCR7-mediated autologous chemotaxis as a mechanism that guides downstream migration in response to IF. However, we identified a separate competing pathway that drives cell migration upstream (rheotaxis). Rheotaxis results from asymmetry in matrix adhesion stress that is required to balance fluid drag imparted by IF on tumor cells. Thus, autologous chemotaxis, mediated by chemical transport, and rheotaxis, mediated by fluid stresses, compete to direct cell migration downstream or upstream in response to IF. Our results provide insight into mechanotransduction in 3D porous media and into the mechanisms by which asymmetries in matrix adhesion tension guide cell migration. Furthermore, our results demonstrate that the consideration of IF is crucial for understanding and treating metastatic disease. Key words: Interstitial flow, mechanotransduction, tumor cell migration, microfluidics.en_US
dc.description.statementofresponsibilityby William J. Polacheck.en_US
dc.format.extent117 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleMechanotransduction of interstitial fluid stresses and effects on tumor cell migrationen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc871166673en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record