MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Soot formation in direct injection spark ignition engines under cold-idle operating conditions

Author(s)
Ketterer, Justin Edward
Thumbnail
DownloadFull printable version (22.62Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
Wai K. Cheng.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Direct injection spark ignition engines are growing rapidly in popularity, largely due to the fuel efficiency improvements in the turbo-downsized engine configuration that are enabled by direct injection technology. Unfortunately, direct injection spark ignition engines also emit higher concentrations of particulate matter than conventional port fuel injected engines. In light of evidence linking particulate matter to adverse human health impacts, particulate emissions standards have been strengthened in both the United States and in Europe. A great deal of research seeking particulate emissions reductions is ongoing. This study contributes to this body of research by offering a refined explanation of the soot formation process in direct injection engines under cold-idle operating conditions. A number of engine and rapid compression machine experiments were conducted in order to understand the impacts of engine operating conditions and fuel composition on particulate matter emissions. Using these data, a conceptual model describing the formation of soot in direct injection engines is outlined. This model suggests that soot forms after the main combustion event in fuel vapour plumes surrounding liquid fuel films on cylinder surfaces through pyrolytic reactions enabled by heat transfer from burned gases from the primary combustion event.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2013.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 167-175).
 
Date issued
2013
URI
http://hdl.handle.net/1721.1/85538
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.