Show simple item record

dc.contributor.advisorFranz-Josef Ulm.en_US
dc.contributor.authorAkono, Ange-Thereseen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Civil and Environmental Engineering.en_US
dc.date.accessioned2014-03-19T15:48:25Z
dc.date.available2014-03-19T15:48:25Z
dc.date.copyright2013en_US
dc.date.issued2013en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/85832
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2013.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 196-208).en_US
dc.description.abstractSince 1921, several experimental methods have been implemented to measure the Griffith fracture energy. The challenge lies in providing a measure that is intrinsic and invariant with respect to external factors such as specimen geometry, loading conditions and prescribed rates. In this thesis, by combining multi-scale experiments and advanced theoretical modeling, we provide a means to characterize the intrinsic fracture toughness using microscopic scratch tests. The scratch test consists in plowing and cutting with a scratch device the surface of a weaker material and it is relevant in many fields of science and engineering, ranging from thin films and coatings, to wear of metals and polymers, and strength of rocks. In this thesis, Dimensional Analysis and Advanced Imaging are employed to demonstrate the predominance of fracture processes in scratch tests with a Rockwell C diamond probe. Based on experimental observations, Linear Fracture Mechanics models are developed that utilize an energy-based approach in order to link the scratch forces to the scratch probe geometry and the fracture properties of the scratched material. The analytical models are implemented into inverse experimental methods for the calibration of the scratch probe geometry and for the determination of the fracture toughness. In particular, the method for fracture toughness determination is shown to be precise, accurate and reproducible. This method is then extended to rate-dependent materials in order to decouple creep and fracture and assess the intrinsic fracture toughness. In particular, for homogeneous materials, a handshake is achieved between macroscopic and microscopic scratch tests. Finally this method is applied to gas shale materials, which exhibit a higher degree of complexity, including heterogeneity, anisotropy and rate-dependence. In particular, a strong directionality of the fracture behavior is observed at the microscopic scale, which is also confirmed at the macroscopic scale. Thus, throughout this work, we elucidate the physical mechanisms of failure underlying scratch tests and build a method for the multi-scale assessment of intrinsic fracture properties, which is robust, accurate, precise and reproducible, and which is applicable to a wide range of material behaviors. This in turn opens additional venues of application for scratch tests.en_US
dc.description.statementofresponsibilityby Ange-Therese Akono.en_US
dc.format.extent227 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectCivil and Environmental Engineering.en_US
dc.titleAssessment of fracture properties and rate effects on fracture of materials by micro scratching: application to gas shaleen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineering
dc.identifier.oclc872277109en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record