Decidable prime models
Author(s)
Young, Jessica Millar, 1973-
DownloadFull printable version (2.792Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mathematics.
Advisor
Gerald E. Sachs.
Terms of use
Metadata
Show full item recordAbstract
A set S of types over a theory T is strongly free if for all subsets X [strict subset] S, there is a countable model of T which realizes X and omits S\X. Throughout, all theories are assumed complete and consistent unless otherwise stated. Theorem 1 If all strongly free sets of types over a recursive theory T are finite, then T has a decidable prime model. Definition 2 A model is decidable if it is isomorphic to a model whose elementary diagram is recursive (technically speaking, this just means the model has a decidable presentation. Throughout this paper, however, we will just say the model is decidable} A classical result in model theory is that any theory with less than 2No many countable models must have a prime model. Our theorem gives an effective extension of this result: Corollary 3 If a countable theory T has less than 2No many countable models, then there is a prime model of T decidable in T.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2001. Includes bibliographical references (leaf 31).
Date issued
2001Department
Massachusetts Institute of Technology. Department of MathematicsPublisher
Massachusetts Institute of Technology
Keywords
Mathematics.