MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The bedrock structured programming system: combining generative metaprogramming and hoare logic in an extensible program verifier

Author(s)
Chlipala, Adam
Thumbnail
DownloadChlipala_The bedrock.pdf (450.1Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
We report on the design and implementation of an extensible programming language and its intrinsic support for formal verification. Our language is targeted at low-level programming of infrastructure like operating systems and runtime systems. It is based on a cross-platform core combining characteristics of assembly languages and compiler intermediate languages. From this foundation, we take literally the saying that C is a "macro assembly language": we introduce an expressive notion of certified low-level macros, sufficient to build up the usual features of C and beyond as macros with no special support in the core. Furthermore, our macros have integrated support for strongest postcondition calculation and verification condition generation, so that we can provide a high-productivity formal verification environment within Coq for programs composed from any combination of macros. Our macro interface is expressive enough to support features that low-level programs usually only access through external tools with no formal guarantees, such as declarative parsing or SQL-inspired querying. The abstraction level of these macros only imposes a compile-time cost, via the execution of functional Coq programs that compute programs in our intermediate language; but the run-time cost is not substantially greater than for more conventional C code. We describe our experiences constructing a full C-like language stack using macros, with some experiments on the verifiability and performance of individual programs running on that stack.
Date issued
2013-09
URI
http://hdl.handle.net/1721.1/86042
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Proceedings of the 18th ACM SIGPLAN international conference on Functional programming (ICFP '13)
Publisher
Association for Computing Machinery (ACM)
Citation
Adam Chlipala. 2013. The bedrock structured programming system: combining generative metaprogramming and hoare logic in an extensible program verifier. SIGPLAN Not. 48, 9 (September 2013), 391-402.
Version: Author's final manuscript
ISBN
9781450323260

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.