Integrated Optical Coherence Tomography and Optical Coherence Microscopy Imaging of Ex Vivo Human Renal Tissues
Author(s)
Lee, Hsiang-Chieh; Zhou, Chao; Cohen, David W.; Mondelblatt, Amy E.; Wang, Yihong; Aguirre, Aaron Dominic; Shen, Dejun; Sheikine, Yuri; Fujimoto, James G.; Connolly, James L.; ... Show more Show less
DownloadFujimoto_Integrated optical.pdf (3.575Mb)
OPEN_ACCESS_POLICY
Open Access Policy
Creative Commons Attribution-Noncommercial-Share Alike
Terms of use
Metadata
Show full item recordAbstract
Materials and Methods
A total of 35 renal specimens from 19 patients, consisting of 12 normal tissues and 23 tumors (16 clear cell renal cell carcinomas, 5 papillary renal cell carcinomas and 2 oncocytomas) were imaged ex vivo after surgical resection. Optical coherence tomography and optical coherence microscopy images were compared to corresponding hematoxylin and eosin histology to identify characteristic features of normal and pathological renal tissues. Three pathologists blinded to histology evaluated the sensitivity and specificity of optical coherence microscopy images to differentiate normal from neoplastic renal tissues.
Results
Optical coherence tomography and optical coherence microscopy images of normal kidney revealed architectural features, including glomeruli, convoluted tubules, collecting tubules and loops of Henle. Each method of imaging renal tumors clearly demonstrated morphological changes and decreased imaging depth. Optical coherence tomography and microscopy features matched well with the corresponding histology. Three observers achieved 88%, 100% and 100% sensitivity, and 100%, 88% and 100% specificity, respectively, when evaluating normal vs neoplastic specimens using optical coherence microscopy images with substantial interobserver agreement (κ = 0.82, p <0.01).
Conclusions
Integrated optical coherence tomography and optical coherence microscopy imaging provides coregistered, multiscale images of renal pathology in real time without exogenous contrast medium or histological processing. High sensitivity and specificity were achieved using optical coherence microscopy to differentiate normal from neoplastic renal tissues, suggesting possible applications for guiding renal mass biopsy or evaluating surgical margins.
Description
available in PMC 2012 June 04
Date issued
2012-02Department
Harvard University--MIT Division of Health Sciences and Technology; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Research Laboratory of ElectronicsJournal
Journal of Urology
Publisher
Elsevier B.V.
Citation
Lee, Hsiang-Chieh, Chao Zhou, David W. Cohen, Amy E. Mondelblatt, Yihong Wang, Aaron D. Aguirre, Dejun Shen, Yuri Sheikine, James G. Fujimoto, and James L. Connolly. “Integrated Optical Coherence Tomography and Optical Coherence Microscopy Imaging of Ex Vivo Human Renal Tissues.” The Journal of Urology 187, no. 2 (February 2012): 691–699.
Version: Author's final manuscript
ISSN
00225347