MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Mathematics
  • Mathematics - Ph.D. / Sc.D.
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Mathematics
  • Mathematics - Ph.D. / Sc.D.
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Noncommutative symmetric functions of type B

Author(s)
Chow, Chak-On, 1968-
Thumbnail
DownloadFull printable version (5.458Mb)
Alternative title
BSym
Other Contributors
Massachusetts Institute of Technology. Dept. of Mathematics.
Advisor
Ira M. Gessel.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The noncommutative symmetric functions Sym of Gelfand et al. give not only a lifting of the well-developed commutative theory of symmetric functions to the non-commutative level, but also relate the descent algebras of Solomon and the quasi-symmetric functions, where the latter are dual to the noncommutative symmetric functions equipped with the internal product, which are anti-isomorphic to the descent algebras. Using this anti-isomorphism, properties of both noncommutative symmetric functions and of descent algebras can be studied. Generalizations of the above theory are made in the present work. The starting point is the quasi-symmetric functions of type B, BQSym, which are shown to have an algebra, a comodule, and a coalgebra structures. The noncommutative symmetric functions BSym are then introduced as a module over Sym dual to the comodule structure of BQSym. It is then made into a coalgebra dual to the algebra structure of BQSym, and into an algebra dual to the coalgebra structure of BQSym. The latter duality defines the internal product *B on BSym, which makes (BSym, *B) anti-isomorphic to the descent algebra [Sigma]Bn of the hyperoctahedral groups Bn, studied by Bergeron and Bergeron.
 
(cont.) Lie idempotents of both BSym and [Sigma]Bn are then studied via the anti-isomorphism. In particular, a one-parameter family of Lie idempotents, which is a q-analog of a known idempotent, is found. A specialization of this family gives, in the descent algebra [Sigma]B, a Dynkin-like idempotent whose action on words is a signed left bracketing. Natural noncommutative generalizations of the Eulerian numbers and of the Euler numbers of type B are given. By a specialization, formulas for some refinements of the Euler numbers of type B are also derived.
 
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2001.
 
Includes bibliographical references (p. 104-107).
 
Date issued
2001
URI
http://hdl.handle.net/1721.1/8640
Department
Massachusetts Institute of Technology. Dept. of Mathematics.
Publisher
Massachusetts Institute of Technology
Keywords
Mathematics.

Collections
  • Mathematics - Ph.D. / Sc.D.
  • Mathematics - Ph.D. / Sc.D.

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.