MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A low order acceleration scheme for solving the neutron transport equation

Author(s)
Li, Lulu, Ph. D Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (1.876Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Nuclear Science and Engineering.
Advisor
Kord S. Smith and Benoit Forget.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The Methods of Characteristics (MOC) is a widely used technique for solving partial differential equations, and has been applied to the neutron transport problems for many years. The MOC method requires many transport iterations to solve large heterogeneous LWR reactor problems with high dominance ratio, and effective acceleration schemes are necessary to make MOC method practical. Various acceleration methods have been developed using low-order diffusion methods for approximating the scalar flux correction to the high-order scalar flux, and limited work has been performed using a low-order transport solution to accelerate the high-order transport solution. This work proposes a Low Order Operator (LOO) acceleration scheme for accelerating the transport equation. More specifically, LOO uses a coarsely discretized grid and iteratively solves the low-order system using MOC transport approximations. By conserving the first-order spatial and angular moments, LOO is proposed to capture more angular effects compared with CMFD. Two variations of the LOO method, together with the CMFD method, are implemented in the OpenMOC framework, which is a 2D MOC solver written to solve the 2D heterogeneous reactor problems. Based on the test cases performed in this work, LOO tends to reduce the number of transport sweeps required compared with the commonly used CMFD acceleration method. LOO also does not rely on under-relaxation as CMFD does to converge typical LWR problems tested in this work. The advantage of LOO over CMFD is more profound for problems with strong angular effects.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 2013.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 111-115).
 
Date issued
2013
URI
http://hdl.handle.net/1721.1/86422
Department
Massachusetts Institute of Technology. Department of Nuclear Science and Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Nuclear Science and Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.