MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Physics
  • Physics - Ph.D. / Sc.D.
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Physics
  • Physics - Ph.D. / Sc.D.
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Measurement of second-order coherence in the microlaser

Author(s)
Aljalal, Abdulaziz M., 1966-
Thumbnail
DownloadFull printable version (15.25Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Physics.
Advisor
Michael S. Feld.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
We study the output and the degree of the second-order coherence fmunction for a microlaser in which the average number of atoms inside the cavity mode is larger than one. Two configurations of the microlaser are explored. In the standing-wave configuration, the atom-cavity coupling strength has a large variation depending on where an atom is injected in the cavity standing-wave mode. On the other hand, for the traveling-wave configuration, the atom-cavity coupling is constant along the cavity mode axis. The difference between the behavior of the microlaser for these two configurations can be attributed to the difference between their gain curves. The experimental results from our many-atom microlaser agree well with the predictions of the single-atom microlaser theory. This is anticipated because the average time an atom spends in the cavity mode is much smaller than the lifetime of a photon'in the cavity mode. As byproduct of this research, two experimental techniques are developed: a new velocity selection scheme for the barium atomic beam and a new simple multi-stop time-to- digital converter (MSTDC). Using two .dye lasers, a narrow velocity ground-state barium atomic beam is prepared. It has a velocity width of about 10% and a height of more than 50% of the original effusive atomic beam. The design of the MSTDC is based on a fast first-in-first-out (FIFO) memory. The implemented version provides stop times for any photons separated by more than 20 nsec and its range can be varied from 5 jisec to 0.66 msec.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2001.
 
Includes bibliographical references.
 
Date issued
2001
URI
http://hdl.handle.net/1721.1/8647
Department
Massachusetts Institute of Technology. Dept. of Physics.
Publisher
Massachusetts Institute of Technology
Keywords
Physics.

Collections
  • Physics - Ph.D. / Sc.D.
  • Physics - Ph.D. / Sc.D.

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.