Show simple item record

dc.contributor.advisorTomasz S. Mrowka.en_US
dc.contributor.authorNg, Lenhard Lee, 1976-en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Mathematics.en_US
dc.date.accessioned2005-08-23T22:11:52Z
dc.date.available2005-08-23T22:11:52Z
dc.date.copyright2001en_US
dc.date.issued2001en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/8671
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2001.en_US
dc.descriptionIncludes bibliographical references (p. 81-83).en_US
dc.description.abstractWe introduce new, readily computable invariants of Legendrian knots and links in standard contact three-space, allowing us to answer many previously open questions in contact knot theory. The origin of these invariants is the powerful Chekanov-Eliashberg differential graded algebra, which we reformulate and generalize. We give applications to Legendrian knots and links in three-space and in the solid torus. A related question, the calculation of the maximal Thurston-Bennequin number for a link, is answered for some large classes of links.en_US
dc.description.statementofresponsibilityby Lenhard Lee Ng.en_US
dc.format.extent83 p.en_US
dc.format.extent7615274 bytes
dc.format.extent7615034 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subjectMathematics.en_US
dc.titleInvariants of Legendrian linksen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.identifier.oclc49650782en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record