Show simple item record

dc.contributor.advisorJames K. Roberge.en_US
dc.contributor.authorLundberg, Kent Howarden_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2014-05-23T19:19:32Z
dc.date.available2014-05-23T19:19:32Z
dc.date.copyright2002en_US
dc.date.issued2002en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/87328
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2002.en_US
dc.descriptionIncludes bibliographical references (p. 193-200).en_US
dc.description.abstractThis thesis demonstrates a one-volt, high-speed, ultra-low-power, six-bit flash analog-to-digital converter fabricated in a fully depleted silicon-on-insulator CMOS technology. Silicon-on-insulator CMOS technology provides a number of benefits for low-power low-voltage analog design. The full dielectric isolation of the silicon island, where the transistors are built,allows higher layout packing density and reduces parasitic junction capacitances. Fully depleted silicon-on-insulator (SOI) exhibits improved subthreshold slope, which allows for lower transistor threshold voltages. Significant savings in power consumption can be obtained by leveraging these advantages. However, the floating-body effect can create significant problems in analog circuits, leading to potential circuit malfunction. A single-ended auto-zeroed comparator topology is optimized to leverage the advantages of fully depleted SOI technology and avoid the floating-body effect. Using this comparator topology and other circuit techniques that operate with a one-volt supply, a six-bit 500-MS/s flash A/D converter is designed with the lowest power-consumption figure of merit in its class. Consuming only 32 mA from a one-volt supply, the quantization energy figure of merit for this design is calculated to be EQ = 2 pJ. Test chips were fabricated in MIT Lincoln Laboratory's 0.25 [mu]m fully depleted SOI CMOS process. Testing of this design demonstrates the potential of SOI technology for the production of high-speed, low-power analog-to-digital converters.en_US
dc.description.statementofresponsibilityby Kent H. Lundberg.en_US
dc.format.extent200 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleA high-speed, low-power analog-to-digital converter in fully depleted silicon-on-insulator technologyen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc52053110en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record