MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Approaches towards development of novel fluorogenic biosensors for detection of small protein analytes

Author(s)
Cheung, Stephanie, S.M. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (11.66Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Chemistry.
Advisor
Barbara Imperiali.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
One of the most remarkable ideas in modem biology is that organization of multicellular life is orchestrated by a relatively small repertoire of signaling molecules, which mediate communication between cells. Breakdown of these communication pathways can have profound consequences, leading to a multiplicity of developmental defects and disease states. In particular, the ErbB family of receptors and ligands regulate key cellular processes such as proliferation, differentiation, and apoptosis during embryonic development, cellular homeostasis, and tumorigenesis. The generality of the ErbB-network has made it one of the most well-studied cell signaling systems. However, traditional methods used to study cellular signaling either fail to capture the dynamic nature of signaling networks or to lack the ability to quantify native signaling components. To further our understanding of the signaling processes that govern cell fate and tissue health, novel non-invasive techniques must be developed to quantitatively track native protein analytes in live cells. Herein approaches toward the development of a set novel fluorogenic biosensors capable of detecting native ErbB-ligands are reported. Using yeast surface display, two libraries of protein-binding scaffolds were engineered to bind selectively to human EGF and human betacellulin with low nM KD. Bio-orthogonal conjugation of these protein scaffolds to 4-DMN, a solvatochromic fluorophore, afforded a biosensor that exhibit a 3-fold fluorescence increase upon binding human EGF. Efforts to improve the fluorescent signal via alternative labeling strategies are also reported.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Chemistry, 2014.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references.
 
Date issued
2014
URI
http://hdl.handle.net/1721.1/87473
Department
Massachusetts Institute of Technology. Department of Chemistry
Publisher
Massachusetts Institute of Technology
Keywords
Chemistry.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.