Show simple item record

dc.contributor.advisorBilge Yildiz.en_US
dc.contributor.authorYoussef, Mostafa Youssef Mahmouden_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Nuclear Science and Engineering.en_US
dc.date.accessioned2014-05-23T19:37:39Z
dc.date.available2014-05-23T19:37:39Z
dc.date.copyright2014en_US
dc.date.issued2014en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/87492
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 2014.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 172-178).en_US
dc.description.abstractThe performance of zirconium alloys in nuclear reactors is compromised by corrosion and hydrogen pickup. The thermodynamics and kinetics of these two processes are governed by the behavior of point defects in the ZrO₂ layer that grows natively on these alloys. In this thesis, we developed a general, broadly applicable framework to predict the equilibria of point defects in a metal oxide. The framework is informed by density functional theory and relies on notions of statistical mechanics. Validation was performed on the tetragonal and monoclinic phases of ZrO₂ by comparison with prior conductivity experiments. The framework was applied to four fundamental problems for understanding the corrosion and hydrogen pickup of zirconium alloys. First, by coupling the predicted concentrations of oxygen defects in tetragonal ZrO₂ with their calculated migration barriers, we determined oxygen self-diffusivity in a wide range of thermodynamic conditions spanning from the metal-oxide interface to the oxide-water interface. This facilitates future macro-scale modeling of the oxide layer growth kinetics on zirconium alloys. Second, using the computed defect equilibria of the tetragonal and monoclinic phases, we constructed a temperature-oxygen partial pressure phase diagram for ZrO₂. The diagram showed that the tetragonal phase can be stabilized below its atmospheric transition-temperature by lowering the oxygen chemical potential. This work adds a new explanation to the stabilization of the tetragonal phase at the metal-oxide interface where the oxygen partial pressure is low. Third, using the developed framework, we modeled co-doping of monoclinic ZrO₂ with hydrogen and a transition metal. Our modeling predicted a volcano-like dependence of hydrogen (proton) solubility on the first-row transition metals, which is consistent with a set of systematic experiments from the nuclear industry. We discovered that the reason behind this behavior is the ability of the transition metal to p-type-dope ZrO₂ and hence lower the chemical potential of electron. Therefore, the peak of the hydrogen solubility in monoclinic ZrO₂ also corresponds to an increased barrier for hydrogen gas evolution on the surface. This explanation opens the door to physics-based design of resistant zirconium alloys, and qualitatively consistent with the monoclinic ZrO₂. Finally, we uncovered the interplay between certain hydrogen defects and planar compressive stress which tetragonal ZrO₂ experiences on zirconium alloys. The stress enhances the abundance of these defects, while these same defects tend to relax the stress. This interplay was used to propose an oxide fracture mechanism by which hydrogen is picked up.en_US
dc.description.statementofresponsibilityby Mostafa Youssef Mahmoud Youssef.en_US
dc.format.extent178 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectNuclear Science and Engineering.en_US
dc.titlePredicting the equilibria of point defects in zirconium oxide : a route to understand the corrosion and hydrogen pickup of zirconium alloysen_US
dc.title.alternativeRoute to understand the corrosion and hydrogen pickup of zirconium alloysen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Science and Engineering
dc.identifier.oclc879667470en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record